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Abstract
Developing autonomous home robots controlled
by natural language has long been a pursuit of
human. While advancements in large language
models (LLMs) and embodied intelligence make
this goal closer, several challenges persist: the
lack of a unified benchmark for more complex
robot tasks, limited evaluation methods and met-
rics, data incompatibility between LLMs and mo-
bile manipulation trajectories. To address these
issues, we introduce Embodied Mobile Manipu-
lation in Open Environments (EMMOE), which
requires agents to interpret user instructions and
execute long-horizon everyday tasks in continu-
ous space. EMMOE seamlessly integrates high-
level and low-level embodied tasks into a uni-
fied framework, along with three new metrics
for more diverse assessment. Additionally, we
collect EMMOE-100, which features in various
task attributes, detailed process annotations, re-
plans after failures, and two sub-datasets for LLM
training. Furthermore, we design HOMIEBOT,
a sophisticated agent system consists of LLM
with Direct Preference Optimization (DPO), light
weighted navigation and manipulation models,
and multiple error detection mechanisms. Finally,
we demonstrate HOMIEBOT’s performance and
the evaluation of different models and policies.

1. Introduction
Developing autonomous robots capable of exploring en-
vironments and performing various daily tasks through a
single instruction has long been a pursuit in robotics. To
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Task: Check if there are any bananas in the fridge. If not,

take one banana in the kitchen and put it in the fridge.
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Figure 1. Data example in EMMOE-100 dataset. A key feature
of EMMOE-100 is the emphasis on the reasoning process and
interleaved execution. In the shown task, the agent must check the
fridge first. Otherwise, even if the agent finally gets a banana from
the kitchen, it will not be considered as a success.

achieve this goal, robots need to understand natural language
instructions, make feasible plans, perceive and interact with
dynamic environments, and equip with powerful naviga-
tion and manipulation skills. Traditional robot learning
methods like imitation learning (IL) (Ho & Ermon, 2016)
and reinforcement learning (RL) (Sutton, 2018) primarily
focus on task-specific policies, but are always limited to
short-horizon tasks and struggle to generalize to new tasks.
Task and Motion Planning (TAMP) treats long-horizon mo-
bile manipulation tasks as hybrid discrete-continuous search
problems (Garrett et al., 2021) and addresses with a hier-
archical architecture (Kaelbling & Lozano-Pérez, 2011):
High-level task planning in discrete task space, low-level
motion planning in continuous action space, and interleaved
execution between two layers. However, the scope of TAMP
remains limited. Despite various extensions (Garrett et al.,
2020; Ren et al., 2024b; Chen et al., 2024), it still requires
specific goal states and detailed scene configurations. The
complexity and dynamism of real-world environments, and
vague user descriptions make it highly challenging to meet
these requirements.
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In recent years, the rapid development of LLM (Achiam
et al., 2023; DeepSeek-AI et al., 2025) and embodied in-
telligence (Brohan et al., 2023b; Driess et al., 2023) has
made this pursuit possible. The scope of each layer in
TAMP has been largely broadened, and spawns various em-
bodied tasks driven by language and vision. In high-level
embodied tasks (Wu et al., 2023; Li et al., 2024a), LLMs
have shown exceptional performance and powerful gener-
alization capabilities. Advanced prompting techniques like
Chain-of-Thought (COT) (Wei et al., 2022) have further
enhanced the logical reasoning abilities of LLMs. Visual
Language Models (VLMs) (Radford et al., 2021) enable
agents to process visual inputs and understand current en-
vironments. Large Multimodal Models (LMMs) (Liu et al.,
2024) extend the application of embodied agents to real-
world scenarios. The most recent world models (Matsuo
et al., 2022) and spatial models (Huang et al., 2024b) allow
agents to more accurately perceive scene information and
spatial relationships. In low-level embodied tasks, the em-
phasis of models has gradually shifted from single skill with
specific objects (Shafiullah et al., 2023) to single skill with
open-vocabulary objects (Fang et al., 2023b), then further
to general models (Black et al., 2024), such as Visual Lan-
guage Navigation (VLN) (Zhang et al., 2024e) and Visual
Language Action (VLA) (Brohan et al., 2023a) models.

However, several problems remain unresolved: 1) Lack of a
comprehensive task and benchmark. Although significant
progress has been made in various embodied tasks, there
is still a gap between the current tasks and the envisioned
language-driven intelligent robots. Meanwhile, existing
embodied tasks always operate in isolation, neglecting the
mutual influence caused by interleaved task execution. All
these factors indicate the need for a more extensive task
framework. By integrating different high-level and low-
level embodied tasks, robots can achieve more advanced
capabilities while enabling a unified evaluation of various
embodied tasks. Each layer will constrain and influence the
others, work collaboratively to accomplish the final task. 2)
Inadequate evaluation methods and metrics. Embodied
task planning involves causal dependencies between each
step, and solutions are not absolute, thus making evaluations
based solely on individual steps or the final state insufficient.
Additionally, current evaluation methods rely heavily on
simulators or PDDL files, which also limits the real-world
deployment and application of agents. Furthermore, how
to make more fine-grained evaluations of the entire agent
system remains a challenge. 3) LLM grounding prob-
lems. Although LLMs excel in commonsense reasoning,
they need to be grounded in current environments to pro-
duce realistic and practical outputs. Furthermore, due to the
uncertainties and dynamic changes in the real world, LLMs
must be able to make timely adjustments based on real-time
feedback. However, the incompatibility between the con-

versation data required for LLMs and the trajectory data
required for robotics increases the difficulty of grounding.

To advance the development of intelligent autonomous
robots, we propose EMMOE as an open challenge, which
requires agents interpret user instructions and execute long-
horizon everyday tasks in continuous space. Besides, we
manually collect EMMOE-100, the first daily task dataset
featuring various task attributes, detailed process annota-
tions, analyses of each output, re-plans after failures. We
also build Supervised Fine-Tuning (SFT) and Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024) sub-
datasets to facilitate the alignment of LMM capabilities with
specific embodied tasks. Finally, we introduce HOMIEBOT,
a sophisticated agent system that integrates both high-level
and low-level models, as well as multiple error detection and
adaptation mechanisms. An example of EMMOE challenge
and EMMOE-100 tasks is shown in Fig.1.

In particular, our paper makes the following contributions:

• We propose EMMOE, the first unified benchmark for
both high-level and low-level embodied tasks with
three novel metrics for more advanced evaluation.

• We collect EMMOE-100, the first everyday task
dataset featuring COT outputs, diverse task designs,
re-plan processes, with SFT and DPO sub-datasets.

• We design HOMIEBOT, a sophisticated agent system
which integrates models at different levels, multiple
error detection and adaptation mechanisms.

2. EMMOE Benchmark
2.1. Problem Statement

EMMOE requires that robots explore environments and per-
form various open-vocabulary mobile manipulation tasks
based solely on language instructions and sensor observa-
tions. More specifically, it combines embodied task plan-
ning, embodied decision making, visual language navigation
in continuous environments, and language-conditioned ma-
nipulation, which requires highly on both level of models
and the design of agent systems.

2.2. EMMOE-100 Dataset

Leveraging Fetch robots (Fetch Robotics, 2020) and interac-
tive environments from Habitat-Lab 2.0 (Szot et al., 2021),
we collect EMMOE-100, a dataset consists of 100 com-
plex everyday tasks. We sample 100 different episodes from
Replica Challenge (Szot et al., 2021) to build simulation
environments. In each scene, we design a daily mobile
manipulation task and collect data. We manually control a
Fetch robot to complete all tasks in continuous space and de-
compose execution trajectories into discrete subtasks, finally
we obtain 966 subtasks in total. Each subtask consists of a
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Table 1. Dataset Comparisons. EMMOE-100 is the first dataset to integrate mobile manipulation tasks with embodied task planning,
decomposing long mobile manipulation trajectories into discrete actions then executed by low-level policies in continuous space.

BENCHMARK
LOW-LEVEL

POLICY
SELECTION

TASK
PLANNING

MANIPULATION NAVIGATION
PROCEDURE

ANNOTATIONS
RE-PLAN

LMM
TRAINABLE

FORMAT

COT
ANALYSIS

OPEN-ENDED
INSTRUCTIONS

DPO
SUB-DATASET

OVMM ✗ ✗ CONTINUOUS CONTINUOUS ✗ ✗ ✗ ✗ ✗ ✗
BEHAVIOR-1K ✗ ✓ CONTINUOUS CONTINUOUS ✗ ✗ ✗ ✗ ✗ ✗
ALFRED ✗ ✓ DISCRETE DISCRETE ✓ ✗ ✓ ✗ ✗ ✗
OCTOPUS ✗ ✓ DISCRETE DISCRETE ✓ ✓ ✓ ✓ ✗ ✗
HABITAT-LAB 2.0 ✗ ✗ CONTINUOUS CONTINUOUS ✗ ✗ ✗ ✗ ✗ ✗
VIRTUALHOME ✗ ✓ DISCRETE ✗ ✓ ✗ ✓ ✗ ✗ ✗
MANISKILL-2 ✗ ✓ CONTINUOUS CONTINUOUS ✗ ✗ ✗ ✗ ✗ ✗
GRUTOPIA ✗ ✓ CONTINUOUS CONTINUOUS ✗ ✗ ✗ ✗ ✗ ✗

EMMOE-100 ✓ ✓ CONTINUOUS CONTINUOUS ✓ ✓ ✓ ✓ ✓ ✓

pre-defined action, a target, and a low-level model selection.
In addition to execution descriptions, they are also annotated
with four first-person view images and detailed reasoning
processes. Moreover, we intentionally design some failed
subtasks and provide corresponding re-plans to enhance
dataset robustness. To address grounding problems, we also
construct SFT and DPO sub-datasets based on EMMOE-
100, which will be formally introduced in Section 4.1.

To enhance task diversity and better align with human de-
mands, we design tasks with five different attributes: Short-
horizon tasks like pick something and place it somewhere.
Long-horizon tasks which consist of at least ten subtasks.
Open-ended tasks that allow multiple possible results and
solutions. Logical tasks that provide vague description and
require logical reasoning. Human-style tasks which are
described in a natural conversation style. One task can pos-
sess multiple attributes simultaneously, as some of these
attributes are not contradictory. Table 1 shows detailed
comparisons with other mobile manipulation and embodied
task datasets. We also provide detailed task statistics and a
complete task list and in Appendix B.

2.3. Evaluation Metrics

The most fundamental metrics in embodied task plan-
ning are Success Rate (SR) and Goal-Condition Success
(GC) (Shridhar et al., 2020). SR measures the proportion
of successful trajectories, while GC is the ratio of goal con-
ditions achieved at the end of a trajectory, a trajectory is
considered successful only if GC reaches 100%. However,
GC focuses only on the final result and relies on pre-defined
state goals, thus failing to meet the requirements of our
EMMOE tasks, which require fine-grained and language-
based evaluations. Although some studies (Li et al., 2024a)
conduct more fine-grained evaluations, they overlook the
flexibility and coherence in embodied task planning and still
rely on abstract terms. The success of an individual step
may not contribute to the final success, and an output that
differs from the ground truth but can complete the task in
an alternative way should not be considered incorrect. Fur-
thermore, fine-grained evaluation of the entire agent system
remains a challenge. To overcome these limitations and

provide more diverse evaluations, we propose the following
new metrics. All details about definitions, calculations, and
examples can be found in Appendix C.

Task Progress To better measure the task execution pro-
cess and the interrelations among subtasks, we propose Task
Progress (TP), which is calculated as follows:

TP = max
ki∈KT

(
len(kcheck

i )

len(ki)

)
(1)

A keypath is defined as an ordered node set of all necessary
subtasks required to complete a task, ki is the i-th keypath
in the keypath set KT for task T , each task is assigned with
several keypaths, representing different ways to complete
the task. We strictly match the execution trajectory with the
subtask nodes in ki in sequential order. Once the node in ki
is successfully matched, it will be added to another ordered
set kcheck

i , then the ratio between the length of kcheck
i and the

length of ki will be recorded. This process will be repeated
for all keypaths in KT , and the highest ratio will become
the TP value of the trajectory. Only if TP reaches 100%, the
trajectory will be considered successful. TP considers both
the flexibility of the execution process and the relationships
between every step. The way of using natural language
and execution results to evaluate also simplifies new task
design and enables evaluation in real-world scenarios, where
writing PDDL files is impractical.

Success End Rate A fully autonomous robot should be
able to actively terminate the execution at a proper moment.
Otherwise, even if the task is already done, the robot may
continue running and get stuck in an endless loop. Therefore,
we propose Success End Rate (SER) to evaluate whether
the agent has the ability to understand its current situation
and reasonably determine the appropriate timing for task
termination, the calculation method is as follows:

SER =
len(S)∑

t∈M countt(end)
(2)

t represents a single trajectory and M is the set of trajec-
tories for all tasks, countt(end) equals 1 if End is the final
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Figure 2. Overview of HomieBot. HomieBot leverages a hierarchical framework to handle long-horizon tasks: High-Level Planning
decomposes tasks into manageable actions, Low-Level Execution accomplishes received actions and provides real-time feedback.

action of t or 0 otherwise. S is the set of successful trajecto-
ries, of which TP equals 100%. Then SER is calculated as
the ratio of the number of successful trajectories to the num-
ber of trajectories that the agent deemed successful. Once
SER reaches a certain threshold or even 100%, auxiliary
methods or metrics are no longer needed to calculate SR.

Success Re-plan Rate Execution failures are common
cases in the real world, especially in unfamiliar environ-
ments, which makes the ability to quickly adjust from fail-
ures and continuously adapt to new environments a crucial
skill. To measure the adaptation and generalization abili-
ties of the agent, we propose Success Re-plan Rate (SRR),
which is calculated as follows:

SRR =

∑
t∈S countt(replan)∑
t∈M countt(replan)

(3)

countt(replan) is the number of re-plans in trajectory t,
other symbol definitions are same as SER. SRR represents
the effectiveness of re-planning and adaptability of the agent.
When SRR reaches 100%, it indicates that the agent can
adapt to all failures then successfully complete the task.

3. HomieBot
3.1. Overview

In this section, we will introduce how HomieBot accom-
plishes EMMOE tasks. HomieBot employs a hierarchical
framework with communication mechanisms for interleaved
execution. High-Level Planning (HLP) deals with embodied
decision making and planning adaptation, while Low-Level
Execution (LLE) handles continuous execution and provides
feedback to HLP. We will describe HLP in Section 3.2 and
LLE in Section 3.3. An overview is shown in Fig.2.

3.2. High Level Planning (HLP)

A long trajectory will be decomposed into several subtasks,
the agent must continuously interact with the environment
and adjust plans based on real-time feedback to ensure gen-
erated subtasks are practical. We design elaborate input and
output instructions to facilitate dynamic adjustments during
execution. Video-LLaVA (Lin et al., 2023) is selected as
our planner model M and fine-tuned with SFT and DPO
sub-datasets, which will be described in Section 4.1.

Multi-modal Instruction To help the LMM better under-
stand current situations, the input instruction I is as follows:

I = {o1∼4, s, T, inv, h, f} (4)

In the visual component, four first-person view images o1∼4

correspond to four directions: front, left, back and right. In
the textual component, system information s and user task T
remain constant throughout the conversation, reminding the
agent of its responsibility. Feedback f indicates the status
of the last execution and detailed error information if failed,
it will also be used to update other parts in I . Inventory
inv reflects the items currently held by the agent, primarily
to prevent the generation of illogical actions, it is updated
based on both f and the type of the last action. Execution
history h logs all previous subtasks and their results. Once
receiving f , the last subtask and its result will be logged
in h. Besides, to better align with real-world scenarios, we
prohibit directly inputting background information into the
LMM (e.g. raw object data, Bird’s Eye View images etc.).
The planner must explore the environment and enhance its
intrinsic capabilities to generate more reasonable outputs.

Json-format Output Considering that different low-level
policies may require different information formats and to
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facilitate the replacement and maintenance of each module,
we define our output in the following uniform format:

O = M(I) = {A,S,m}, S = {action,target} (5)

A represents the analysis of each outputs, which is inspired
by works like CoT (Wei et al., 2022). Before generating
final outputs, planner model M is expected to summarize
previous executions and current situations, analyze what to
do next, and propose the subsequent subtask S. To ensure
the feasibility of the output, action in each subtask must
be chosen from the available action list. Similarly, m which
represents the selected low-level models or policies, is also
restricted to a given model list. target can be either an
object or a spot, it should be observable in the provided
images and deemed necessary to complete the task.

3.3. Low Level Execution (LLE)

LLE will convert S, m and inv from HLP into precise
model-calling instructions. Error detection will be applied
at different stages to monitor the execution process. Once
the execution is completed or failed, environmental images
and feedback will be sent back to HLP. We set up six skills
based on the support of the simulator(see Table E1 for more
details). Since the required information varies from models
and would significantly impact the model performance, we
establish two distinct settings to ensure fairness.

Execution With Background Information More specifi-
cally, execution with background information means that the
selected model needs precise position and state information
of the target. As M3 (Gu et al., 2022) shows exceptional per-
formance in all predefined skills when utilizing background
information in Habitat, we choose it as the unique model
choice m in this setting. To ensure that M3 can recognize
the natural language style target, we implement a name
mapping for target and adjust its original setting to better
align with requirements of our tasks. In addition to text
and image data, LLE also captures the execution process of
each step and the entire trajectory data in video format. This
means that HomieBot has the potential to bridge the gap
between robot data and LMM data as the entire execution
process is fully automated and annotated, users only need to
set up the scene and input instructions. The video data can
be utilized for IL in robotics, while the text and image data
can be utilized for LMM training.

Execution Without Background Information Without
background information means that the agent can only rely
on the information captured by its sensors and the intrin-
sic abilities of low-level models to complete the task. As
shown in Table E2, we set two manipulation models and
two navigation models. For manipulation, RT-1-X (Padalkar
et al., 2023) is for Pick and Place, while Octo (Team

et al., 2024b) is for Open and Close. For navigation, No-
MaD (Sridhar et al., 2024) specializes in image navigation
and is suitable when target is a spot or large object. Pix-
Nav (Cai et al., 2024) excels in pixel-level and object navi-
gation, making it ideal when target is a detectable object.

As the deployment of robots in the real world always de-
mands high real-time performance and is constrained by
hardware limitations, we prefer to choose lightweight mod-
els rather than the currently popular VLA models. This
approach helps prevent the system from becoming too bur-
densome. Additionally, breaking down long-horizon tasks
into action primitives would also reduce the performance
requirements of low-level models. Compared to general-
purpose end-to-end models, specialized lightweight models
can complete the action while reducing time costs.

Error Detection To facilitate communication with HLP
and provide more detailed error information, we further
classify common errors into four main types and several
subtypes. Logical error L1: The agent’s hands are already
full but still attempts to pick/open/close; L2: The agent
holds nothing but attempts to put; L3: The agent attempts
to pick/put the object in a closed container; L4: The agent
attempts to interact with a non-interactive object. Distance
error D1: The agent stands too far and is unable to reach
the target; D2: The agent is too close to the target and its
arm is hindered from properly extending during interaction.
Format Error F1: The output action or model is not in
the available list; F2: The output target does not exist in
the current scene or can not be recognized by low-level
models. Execution Error E1: The limited capabilities of
the low-level models or policies cause the failure; E2: Failed
execution may result in the inventory information being
accidentally updated. Furthermore, since these errors would
occur at different stages, we also conduct multiple phases
of error detection during execution. More classification and
detection details are given in Appendix E.

4. Experiments
4.1. Data Augmentation

SFT Augmentation Previous work(Zhang et al., 2024c)
has shown that a standardized data format would signifi-
cantly enhance model training and evaluation. Therefore,
we write a uniform script to convert the original EMMOE-
100 data into fixed-format conversation data. During this
process, all failed subtasks will be skipped as they are treated
as junk data for the SFT dataset, and we initially obtained
930 SFT data in this way, which is still insufficient for LLM
training. To expand the dataset, we use GPT-4o (Achiam
et al., 2023) to regenerate text descriptions of tasks and the
analysis of each subtask for three times. This approach not
only enhances the diversity of instructions, allowing the
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Table 2. Performance comparison of different models on EMMOE-100 tasks. The highest values for each metric are highlighted in bold.

MODEL SR PLWSR TP SRR SER

GPT-4O(ACHIAM ET AL., 2023) 13.33 10.51 29.79 3.57 49.38
GEMINI-1.5-PRO(TEAM ET AL., 2024A) 17.33 14.79 38.03 3.39 55.91
QWEN2-VL-7B(WANG ET AL., 2024B) 1.00 0.50 16.55 0.59 25.00
MINICPM-V 2.6(YAO ET AL., 2024) 0.67 0.57 14.45 0.06 40.00

HOMIEBOT-7B (SFT) 27.67 20.88 50.27 9.23 53.90
HOMIEBOT-7B (SFT+DPO) 30.30 24.66 51.39 8.72 60.81

LLM to adapt to different user input styles, but also helps
to avoid introducing additional inaccuracy or inconsistency.
Finally, we obtain 3,720 SFT data in total. The relevant
code and data samples are available in Appendix F.1.

DPO Augmentation DPO (Rafailov et al., 2024) train-
ing has a strict requirement for data format, which must
include prompt, chosen and rejected. For the i-th subtask
and its input instruction Ii, if the execution of output Oi

fails but the next output Oi+1 succeeds after re-plan, we
will choose Ii as the prompt, Oi as the rejected and Oi+1

as the chosen. Although this approach aligns well with the
concept of preference data, the proportion of re-planned
data is relatively low. Thus, we utilize following methods
to construct new DPO data. Order Change: We shuffle
the order of successful subtasks, treating successful output
Oi as chosen and Oi+1 as rejected. This approach aims
to help LLMs learn the logical relationships between sub-
tasks, particularly the optimal sequence of actions. Action
Change: To standardize the planner model’s output and
reduce responses outside the action list, we replace action
in subtasks with non-standard names or actions outside the
available list. Model Change: To enable the LLM owns
the ability to select the appropriate low-level model for a
given scenario, we replace the model choice with models of
the same type in the model list. As a result, we get 10,104
DPO data in total. More visualized processing flows and
data samples are provided in Appendix F.2.

4.2. Model Training

We select 90 tasks from EMMOE-100 as our training tasks.
Using the methods described in Section 4.1, we obtain 3,316
SFT training data and 8,984 DPO training data in total. Then
we select Video-LLaVA-7B (Lin et al., 2023) as our base
model and conduct a two-stage training process. In the first
stage, we fine-tune the base model with a learning rate of
5e-4 on 4×NVIDIA A40. In the second stage, we align the
fine-tuned model with DPO and train with a learning rate
of 5e-6. To prevent catastrophic forgetting and maintain the
intrinsic model capability, LoRA (Hu et al., 2021) is applied
in both stages, with LoRA rank set to 128 and α to 256 in
stage one, and LoRA rank set to 8 and α to 8 in stage two.

More training details are listed in Appendix G.

4.3. Setup

Metrics In addition to SR, TP, SER and SRR introduced
in Section 2.3, we also choose Path Length Weighted SR
(PLWSR)(Shridhar et al., 2020) as one of our evaluation
metrics. PLWSR is defined as SR×(length of successful
trajectory) / max(length of expert trajectory, length of suc-
cessful trajectory) and measures the ability gap between the
agent and the expert in successful trajectories.

Baselines High Level Planner: Modular framework and
communication mechanism greatly facilitate the deployment
of various LMMs in our HomieBot. We select four represen-
tative LMMs as baseline planners: GPT-4o (Achiam et al.,
2023), Gemini-1.5-Pro (Team et al., 2024a), Qwen2-VL-
7B (Wang et al., 2024b) and MiniCPM-V 2.6 (Yao et al.,
2024). GPT-4o and Gemini-1.5-Pro can be easily integrated
into HomieBot after minor adjustments to format require-
ments. By leveraging the in-context learning abilities and
providing output examples for each inference, the other two
models can also be deployed in our system. Low Level
Executor: We extract individual skills from M3 (Gu et al.,
2022) and modify their implementations. Original skills
require the initial and final states of the object. We map the
object name to obtain specific background information and
select the nearest object. Additionally, robotic arms will
be reset after each execution to enhance the success rate.
We also pass all environmental state information between
executions to ensure environmental consistency. We provide
more details of deployment in Appendix H.1.

Evaluation Benchmarks All tasks in EMMOE-100 will
be used for evaluation, and the remaining ten untrained tasks
will serve as our test set. Each task is executed three times
with a maximum step limit of 20 each time, the average
execution results will be used for the final calculation.

4.4. Results

We begin with a general evaluation since all data are unseen
to baseline models. As shown in Table 2, the DPO version
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Figure 3. Error Statistics. The left and right figures depict the proportion of each error type of each model in successful and failed
trajectories respectively. Additionally, we indicate the proportion of total execution failures next to each model’s name. Due to too few
successful trajectories for Qwen2-VL and MiniCPM-V 2.6, their results will not be shown in the left figure. The full statistical data in
digital counts are available in Appendix H.2.

Table 3. Performance comparison of HomieBot on the training and test split. The highest values for each metric are highlighted in bold.

MODEL
TRAIN SPLIT TEST SPLIT

SR PLWSR TP SRR SER SR PLWSR TP SRR SER

HOMIEBOT (SFT) 28.52 21.49 50.16 9.59 53.85 20.00 15.36 51.19 6.55 54.55
HOMIEBOT (SFT+DPO) 31.84 25.82 52.29 9.69 60.71 16.67 14.36 43.39 3.08 62.50

of HomieBot achieves the best performance in SR, PLWSR
and TP metrics and significantly surpasses the baseline mod-
els. Additionally, it is evident that for open-source models
of similar size, even state-of-the-art LMMs like Qwen2-
VL-7B (Wang et al., 2024b) and MiniCPM-V 2.6 (Yao
et al., 2024) struggle to complete EMMOE tasks without
additional training. For SER, though the DPO version still
performs best, the improvement is not so obvious as in other
metrics, Gemini-1.5-Pro even surpasses the SFT version.
This phenomenon should be attributed to the nature of SER,
which reflects the model’s ability to correctly determine
when a task is completed and should be terminated. It is less
influenced by format requirements and low-level executions,
but relies more on the model’s inherent reasoning ability.
The strong reasoning capabilities of GPT-4o (Achiam et al.,
2023) and Gemini-1.5-Pro (Team et al., 2024a) enable them
to effectively decide when to end a trajectory.

However, SFT version performs best rather than DPO ver-
sion for SRR. Since SRR reflects the model’s ability to adapt

to environments and adjust from failure, we think this could
be relevant with the limitations of the DPO method (Xu
et al., 2024). Although DPO brings unparalleled advantages
in training efficiency and convenience, it compromises the
model’s generalization and transferability to certain extent.
Therefore, we further evaluate HomieBot separately in train-
ing and test set. As we can observe in Table 3, while DPO
version performs best on all metrics in the training split, it
only outperforms SFT version on SER in the test split. Ad-
ditionally, DPO version shows a significant decline on SRR
and even performs slightly worse than GPT-4o and Gemini-
1.5-Pro. This observation further confirms that the DPO
method introduces certain generalization issues. Notably,
SER remains stable for both versions across the training
and test splits, which further demonstrates that SER is more
related to the model’s inherent judgment ability, and our
specialized handling of End during dataset construction
has enhanced this ability (See in Appendix F.2).
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Table 4. Results of LLE evaluations. P represents the proportion of
single action errors. SR here represents an average value as each
skill is attempted up to three times per execution.

METRICS GO TO PICK PLACE OPEN CLOSE

P 38.49 49.77 7.30 3.32 1.11
SR 45.32 22.45 40.97 43.13 36.45

4.5. Analysis

To further explore the reasons for the overall low success
rate and demonstrate how HomieBot can be used to simulta-
neously evaluate both HLP and LLE, we conduct a detailed
analysis based on the results in Section 4.4. Using the error
classification in Section 3.3 and the recorded feedback, we
collect all errors occurred during experiments. To identify
which errors are acceptable and solvable and which are the
primary causes of failure, we further classify the collected
errors according to whether they appear in successful or
failed trajectories, the results are shown in Figure 3.

Error Analysis Except for E1 and E2 error that come
from low-level models, each error type corresponds to dif-
ferent capabilities of LMMs. In failed trajectories, the pre-
dominant error type across all baseline models is F2 error
and greatly exceeds other types. This suggests that the pri-
mary obstructive factors are physical grounding failures and
model hallucinations. In practical execution processes, we
observe that even models are already told the object doesn’t
exist or can’t be recognized, they may still produce inappro-
priate outputs or repeat mistakes after several steps. This
issue has been significantly improved in our models, which
also highlights the significance of LMM-trainable format
data. With a small amount of data combined with our data
augmentation methods, LMM can build up a general under-
standing of the current environment, enabling outputs to be
grounded and compatible with low-level models.

Besides, the proportion of failed executions for two open-
source models is relatively low, indicating that most subtasks
are successfully completed, which seems to conflict with the
very poor SR. Based on our observations, since EMMOE in-
cludes numerous complex and long-horizon tasks, execution
histories often become lengthy. When the model’s under-
standing ability is insufficient, it may fail to fully understand
or even forget previous execution contents, ultimately result-
ing in meaningless outputs. Although these subtasks can be
successfully executed, they contribute nothing to the final
task, and even worse, they will consume remaining steps
and fasten task termination. In successful trajectories, the
most common error is D1 error. This indicates that even
when the model’s spatial perception ability is insufficient,
it can be adjusted through feedback information. Typically,
after a D1 error occurs, the model will output Go to action
based on the feedback, effectively resolving this error. We

Table 5. Average success rate for each type of task. The highest
value of each model is highlighted in bold.

MODEL
SHORT-

HORIZON
LONG-

HORIZON
OPEN-
ENDED

LOGICAL
HUMAN-
STYLE

HOMIEBOT (SFT) 43.75 24.60 18.52 34.01 25.24
HOMIEBOT (SFT+DPO) 41.67 28.11 15.38 35.86 27.88

conduct more detailed case study in Appendix I.

LLE Evaluation Comprehensive error types allow us to
evaluate HLP and LLE separately. We further classify E1
and E2 errors based on action types and count total occur-
rences of each action, the calculation results are shown in
Table 4. It is evident that Pick action has a significantly
lower success rate and the highest proportion of execution
errors compared to other actions.

Task Performance We also evaluate SR for each type of
task defined in Section 2.2. As shown in Table 5, typical
tasks are relatively easy due to straightforward processes
and fewer overall steps. The most challenging are open-
ended tasks, which usually have a very long total step count,
with flexible processes and results, demanding powerful
capabilities from both HLP and LLE models.

5. Discussions
Limitations Limited actions and available space in Habi-
tat restrict the scope of task design. Besides, while standard-
ized output enables uniform evaluation for different models,
it will sacrifice certain information precision. The growing
number of model inferences will also lead to additional time
costs. Moreover, disparities among different simulators,
simulators and the real world, pose significant challenges
for the transfer and generalization of low-level models, a
more general and realistic evaluation platform is needed.

Future Works Real-world data collection and deploy-
ment of Homie is possible since the collection methods and
evaluation metrics are independent of simulators. Besides,
how to efficiently utilize historical images and videos rather
than text only to optimize the memory mechanism still needs
to be explored. Finally, exploring how Homie can interact
or collaborate with family members to complete daily tasks
is also worthful and necessary.

6. Conclusion
In our work, we first introduce EMMOE, the first unified
benchmark designed to evaluate both high-level planners
and low-level policies. Then we present the collection and
features of EMMOE-100 and propose three novel metrics
to complement existing evaluation methods. Next, we in-
troduce our HomieBot and illustrate how its two main com-
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ponents HLP and LLE function. In experimental parts, we
demonstrate how to use original EMMOE data to construct
LMM-trainable SFT and DPO datasets and evaluate dif-
ferent levels of models. Finally, we conduct an in-depth
analysis based on the detailed error information.
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This research utilizes publicly accessible models and simu-
lators, ensuring that all data comply with privacy regulations
and have been anonymized when necessary. We acknowl-
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Appendix
The appendix is structured as follows:

• Related Work in Section A.

• Dataset in Section B.

• Metric Calculation in Section C.

• High Level Planning in Section D.

• Low Level Execution in Section E.

• Data Augmentation in Section F.

• Training Details in Section G.

• Experimental Details in Section H.

• Case Study in Section I.

A. Related Work
A.1. Embodied Tasks and Benchmarks

As embodied agents and LLMs develop rapidly, many embodied tasks and benchmarks have emerged. In Embodied
Question Answering (EQA) tasks, EQA-v1 (Das et al., 2018), VirtualHome (Puig et al., 2018), MT-EQA (Yu et al., 2019),
MP3D-EQA (Wijmans et al., 2019), IQUAD V1 (Gordon et al., 2018), OpenEQA (Majumdar et al., 2024), HM-EQA (Ren
et al., 2024a), S-EQA (Dorbala et al., 2024) contains a variety of task range to evaluate logical reasoning abilities of LLMs.
BLINK (Fu et al., 2024a) for visual perception abilities of LMMs. In Vision-and-Language Navigation (VLN) tasks,
R2R (Anderson et al., 2018), R4R (Jain et al., 2019) and VLN-CE (Krantz et al., 2020), SOON (Zhu et al., 2021) evaluate
LLM’s capabilities under different navigation settings. ALFRED (Shridhar et al., 2020) Behavior series (Srivastava et al.,
2022; Li et al., 2023a) focus on interactive household tasks OVMM (Yenamandra et al., 2023) involves picking and placing
any object in unseen environments. VLA-3D (Zhang et al., 2024b) for 3D semantic scene understanding and navigation.
Common manipulation datasets include MT-Opt (Kalashnikov et al., 2021), VIMA (Jiang et al., 2022), ManiSkill2 (Gu
et al., 2023), Calvin (Mees et al., 2022), BridgeData-v2 (Walke et al., 2023), RH20T (Fang et al., 2023a), Open-X (O’Neill
et al., 2024), AgiBot World (contributors, 2024). In mobile manipulation, RT series (Brohan et al., 2022; Zitkovich et al.,
2023) and Mobile ALOHA (Fu et al., 2024b) exhibit strong capabilities. GRUTOPIA (Wang et al., 2024a) takes human
participation into account. Additionally, some benchmarks focus on cross-embodiments, like RoboMIND (Wu et al., 2024).
Despite numerous benchmarks, a unified benchmark and relevant task is still missing. Traditional mobile manipulation uses
IL to learn entire trajectories, complicating the evaluation of intermediate processes. In our work, we propose EMMOE, a
holistic benchmark designed to assess both final results and the execution process.

A.2. LLMs For Robotics

LLM-driven embodied agents represent cutting-edge advancements in robotics. SayCan (Ahn et al., 2022), Palm-E (Driess
et al., 2023), LLM-Planner (Song et al., 2023) and EmbodiedGPT (Mu et al., 2024) combine LLMs with complex embodied
tasks. TAPA (Wu et al., 2023) and SayPlan (Rana et al., 2023) use visual modules for multi-room settings. Voyager (Wang
et al., 2023), Smallville (Park et al., 2023) and Octopus (Yang et al., 2023a) use LLMs to choose pre-defined functions.
L3MVN (Yu et al., 2023), ESC (Zhou et al., 2023), SayNav (Rajvanshi et al., 2023) and VLFM(Yokoyama et al., 2024)
build frontier or semantic maps to navigate. ViNT (Shah et al., 2023) and NoMaD (Sridhar et al., 2024) focus on image
navigation, PixNav (Cai et al., 2024) uses LLM to select target image pixel. GOAT (Chang et al., 2023) is a comprehensive
navigation system. Navid (Zhang et al., 2024e) and Uni-Navid (Zhang et al., 2024d) focus on end-to-end navigation models.
RT-2 (Zitkovich et al., 2023) is the first Visual Language Action (VLA) model. RoboFlamingo (Li et al., 2023b) and
OpenVLA (Kim et al., 2024) are open-source VLA models. Leo (Huang et al., 2024a) focuses on multiple QA problems.
Manipulate Anything (Duan et al., 2024) and Octo (Team et al., 2024b) are light models for arm control. ALOHA (Zhao
et al., 2023) improves action prediction through action chunking. OPF (Peng et al., 2024) explores robust Tracking with
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interactive robots. RoboAgent (Bharadhwaj et al., 2024) enhances object detection and generalization, and LCB (Shentu
et al., 2024) uses LLMs to generate implicit strategy goals. ManipLLM (Li et al., 2024b), VoxPoser (Huang et al., 2023),
Rekep (Huang et al., 2024b) combine environmental perception and task execution.

A.3. LLMs for Task Planning

Typical usages of LLM for task planing include treating LLM as a translator or a planner. There are also some studies
combining LLMs with traditional PDDL (Guan et al., 2023; Valmeekam et al., 2024; Silver et al., 2024; Zhou et al., 2024),
in which LLM will be treated as a translator between the real-world and specific domain planner. But this method is limited
by the performance of the domain planner and can’t leverage the powerful commonsense reasoning capabilities of LLMs
to assist in planning. When LLM is treated as a planner, discrepancies between LLM’s outputs and real-world conditions
always lead to execution failures. LLM-Planner (Song et al., 2023) make a straightforward re-plan. Self-Refine (Madaan
et al., 2024) use single LLM as generator and evaluator. Reflexion (Shinn et al., 2024) treats LLM as the Actor and the
evaluator as the Critic. ViLA (Lin et al., 2024) utilizes GPT-4V (Yang et al., 2023b) to obtain visual feedback. However,
self-improvement relies heavily on prompt design and intrinsic capabilities of LLMs. If errors unrelated to planning occur,
LLMs may struggle to self-correct. Inner Monologue (Huang et al., 2022) and RoCo (Mandi et al., 2024) utilizes external
collision detection and feedback. DoReMi (Xie et al., 2024) sets pre-defined constrains. Nevertheless, LLMs may make
same mistakes in similar situations as the model weights are not changed. SayCan (Ahn et al., 2022) trains a value function
to consider both generated actions and their values. Remember (Zhang et al., 2024a) builds a memory module and retrieves
similar state-action pairs. Retroformer (Yao et al., 2023) learns a retrospective model via policy gradient optimization.
While RL-based adaptation mechanisms are able to adjust actions before execution, defining and training an effective
value function or reward model is highly challenging. The recently popular DPO (Rafailov et al., 2024) algorithm greatly
simplifies this process by requiring only a preference dataset. In our HOMIEBOT, we use DPO for model alignment,
CoT (Wei et al., 2022) and self-reflection for decision-making. Additionally, error detection and feedback mechanisms are
applied during low-level execution.

B. Dataset
B.1. Data Collection

We first randomly sample episode information provided by Replica Challenge (Szot et al., 2021) to build the task scenario,
then we use the Fetch robot to collect EMMOE-100 in Habitat-lab v0.2.3. To facilitate data collection, we modify the
original interaction script, and new interface can be seen in Fig. B1. The interface provides both third-person and first-person
view observation to facilitate data collection, third-person observation is used to assist with collection, only first-person
observation with 256∗256 resolution will be saved. Notably, we only use the scene information to collect environment data,
other functions and metrics in Replica Challenge are irrelevant to our work.

We also show the modified code clip, once a single subtask is finished, we can conveniently save relevant information by
pressing the keyboard.

def save_first_view_images():
directions = [’left’, ’back’, ’right’, ’front’]
global h_cnt

h_cnt += 1
for i in range(4):

for j in range(19):
base_action = [0, 1]
name = base_action_name
args = {base_key: base_action}
result = step_env(env, name, args)

use_ob = observations_to_image(result, {})
draw_ob = use_ob[:]
from PIL import Image
ob = Image.fromarray(draw_ob)
width, height = ob.size
ob.crop((384, 0, width, height)).save(os.path.join(info_folder, f"subtask{h_cnt}_{directions[i]}.png"))

return result, arm_action, end_ep
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Figure B1. Data collection interface in Habitat-lab v0.2.3. Third-person observation in the left is used to facilitate data collection, only
first-person observation with 256∗256 resolution in the right will be saved.

(a) Task Classification (b) Task Cloud

Figure B2. Dataset Statistics

B.2. Dataset Details

In terms of task classification, the long-horizon task is the most, with 84 (76 in the train set and 8 in the test set). The least
task is the most difficult open-ended task, with 6 in the train set and 3 in the test set. The distribution of the five types of
tasks in the train and test sets is also approximately the same. In the word cloud map, we can see that put, find, sofa, etc. are
popular words in our task.

B.3. Dataset Demonstration

Here we provide a demonstration of EMMOE data, its viusal information is shown in Fig. B3, the collection method is as
Section 2.2.

Task: check if there are anything in the kitchen drawer, if it’s empty put a short can into it

Subtask1: [Go to, blue_sofa] (PixNav)
Analysis: According to my final task, I must go to kitchen first, but I can’t find kitchen in my sight and I find a blue sofa,
so I should go to the blue sofa first and find kitchen later
Feedback: None
Inventory: None

Subtask2: [Go to, living_room] (NoMaD)
Analysis: I successfully arrived sofa but I still can’t find kitchen, as I see living room, I should go to living room then keep
searching kitchen
Feedback: None
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Figure B3. Task Demonstration. line: subtask sequence; row: front, left, back, right
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Inventory: None

Subtask3: [Go to, kitchen_drawer] (NoMaD)
Analysis: I successfully arrived the living room and find the kitchen drawer, so I should go to kitchen drawer next
Feedback: None
Inventory: None

Subtask4: [Open, kitchen_drawer] (octo)
Analysis: I successfully arrived the kitchen drawer but it’s closed. To check items in the drawer, I should open it first
Feedback: None
Inventory: None

Subtask5: [Go to, kitchen_counter] (NoMaD)
Analysis: I successfully opened the drawer and find nothing in it, according to my task, I should put a short can into it in
this case, as I find one on the kitchen counter, I should go there next
Feedback: None
Inventory: None

Subtask6: [Pick, short_can] (RT-1-X)
Analysis: I successfully arrived the kitchen counter and find the can, so I should pick it next
Feedback: None
Inventory: short_can

Subtask7: [Go to, kitchen_drawer] (NoMaD)
Analysis: I successfully picked the short can and I should come back to kitchen drawer to put it in
Feedback: None
Inventory: short_can

Subtask8: [Put, short_can, kitchen_drawer] (RT-1-X)
Analysis: I successfully arrived the kitchen drawer and I should put the can into it next
Feedback: None
Inventory: None

Subtask9: [Close, kitchen_drawer] (octo)
Analysis: I successfully put the can into the drawer, and it’s better to close the drawer next
Feedback: None
Inventory: None

Subtask10: [End]
Analysis: According to the historical execution and final task, I have finally finished the task and it’s time to end
Feedback: None
Inventory: None

We also provide all designed tasks here, the task design principles focus on reflecting human’s real-life with a variety of
common demands and task descriptions.

(1) fetch a frozen meat can and put it on the kitchen counter
(2) clean up the brown table and place all items in the fridge
(3) find a cold apple and put it on the kitchen_counter
(4) find an bowl and put it on the sofa
(5) find an master_chef_can on the wood_table and put it into the drawer
(6) go to the floor 2
(7) prepare neccessary ingredients to make a fruit salad and put them on the yellow_table
(8) keep the number of red_boxes on the yellow_table to 5
(9) search a blue can for me
(10) fetch one crack box and one sugar box and put them on the beige table
(11) find two cracker boxes in the room and put them on the kitchen counter
(12) check if there are apples in the fridge and put one into it if not
(13) pick all fruit on the brown table and put them on the sofa
(14) put the bowl into the kitchen cabinet
(15) find a bleach cleanser and a sponge then place them on the brown table
(16) fetch two apples from the kitchen counter and put them into the fridge
(17) clean the wood table and put all items except mug to the sofa
(18) I want to eat at the brown table and prepare a fish can for me
(19) fetch two cracker_boxes from the kitchen sink and refrigerate them
(20) check and close all kitchen facilities
(21) prepare two bowls on the brown table
(22) fetch two meat_cans from the kitchen and put them on the beige table
(23) find a mug and put it on the tvstand
(24) go to kitchen then put the red box into the drawer and put the red can into the fridge
(25) find an apple and place it on the tv_stand
(26) clean the tvstand and put all items to the sofa
(27) clean up the tv_stand and put all items in the kitchen drawer
(28) put the sponge and bleach cleanser on the sofa into the kitchen drawer
(29) freeze a sugar_box
(30) put the blue can on the kitchen_counter to the fridge
(31) find two potted_meat_cans and put them on the sofa
(32) clean up the blue table and put all items to the white cabinet
(33) find an apple and put it on the sofa
(34) take a bowl and a meat can from the kitchen and put them on the brown table
(35) clean up the kitchen sink and put fruit to the fridge other items to the kitchen_counter
(36) replenish the number of blue cans on the table to 3
(37) find two bowls in the room and put them in the kitchen sink
(38) put all cracker_boxes on the tvstand to the sofa
(39) take a yellow box and put it into the fridge.
(40) put the apple on the blue table to the sofa
(41) fetch 3 different kinds of fruit and put them on the beige table
(42) I want to eat at the brown table and prepare some fruit for me
(43) put the frozen sponge into the kitchen drawer
(44) put all bowls on the sofa to the kitchen sink
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(45) get a can in the fridge and put it on the table
(46) prepare a washed apple then put it on the yellow table
(47) clean up the tvstand
(48) clean up the chair
(49) put everything in the kitchen sink onto the kitchen_counter
(50) wash the bowl on the kitchen_counter
(51) fetch two sugar boxes in the fridge and put them on the brown table, if there aren’t enough sugar boxes in the fridge, find
them elsewhere in the room
(52) Prepare a soup_can and a red_bowl on the kitchen_counter
(53) put all the fruit on the kitchen_counter into the sink
(54) put the bowl on the wood_table and the apple on the kitchen_counter to the kitchen sink
(55) refrigerate all master_chef_cans on the tvstand
(56) clean up the blue sofa
(57) find a gelation_box and put it in the drawer
(58) put the cracker box in the kitchen sink to the sofa
(59) check if there is food on the sofa then put them in the fridge if so
(60) refrigerate all lemons in the kitchen drawer
(61) put all food on the sofa into the drawer
(62) take the bowl on the table to the kitchen
(63) clean up the tv_stand and place items on the kitchen_counter
(64) check if there are bananas in the fridge; if not, get one from the kitchen and put it in the fridge
(65) fetch a yellow box from the refrigerator and place it on the table, if there isn’t one, get it from the kitchen
(66) clean the sofa and put all items on the table in front of it
(67) find an apple and place it in the drawer
(68) Put the red bowl on the blue table in the fridge.
(69) go to the second floor
(70) keep the number of red_boxes on the yellow_table to 3 and put extra red_boxes to the kitchen_counter
(71) clean up the beige table and put all items to kitchen
(72) put all fruit in the living_room to the fridge
(73) find an apple and place it in the fridge
(74) find a bowl and a mug then put them into the kitchen sink
(75) replenish the number of pears in the fridge to 3
(76) find an apple and put it on the brown table
(77) put all lemons and apples on the sofa to the tvstand
(78) put all bowls in the open drawer onto the kitchen_counter
(79) clean up the sofa and put all items into the drawer
(80) clean up the sofa and place all items on the nearby chair
(81) freeze the meat can on the blue desk
(82) check and close all appliances in the room
(83) get a cold apple and put it on the wood table
(84) check if there are anything in the kitchen drawer, if it’s empty put a short can into it
(85) turn off all appliances in the room then go the door and wait
(86) prepare some food and put it on the brown table
(87) check items in the fridge then increase the number of blue cans to 2
(88) find a box and put it on the tvstand
(89) clean the table in front of you and put all items into the sink
(90) find two bananas on the tvstand and put them to the kitchen sink
(91) find the bowl in the drawer and put it to the kitchen sink
(92) get a cold fruit and prepare to wash it
(93) clean the sofa
(94) put all items on the sofa to the tvstand
(95) put all items on the blue sofa to the white desk
(96) find the sponge and put it into the drawer
(97) find two kinds of fruit and put them on the tvstand
(98) find a banana and place it in a bowl
(99) put the bowl on the brown table into the kitchen sink and put the suger_box on the tvstand to the sofa
(100) put the green_can on the brown_table to the fridge

C. Metric Calculation
C.1. Task Progress

In the task demonstrated in Appendix B, it’s easy to find that to complete the task, we have to open the drawer to see if there
is anything, and then we have to finish a put operation (put short can in the drawer). In addition to these two, we can also
add some operation like, go to the drawer, close the cook and other actions which do not influence the final success. So we
get the keypath as shown below,

[
[

"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[End]"

],
[

"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[Close, drawer]",
"[End]"

],
[

"[Go to, drawer]",
"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[End]"

],
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[
"[Go to, drawer]",
"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[Close, drawer]",
"[End]"

]
]

Here’s an example to show how to calculate TP,

(1) [Go to, kitchen](success)
(2) [Open, drawer](success)
(3) [Put, short_can, drawer](fail)
(4) [Go to, kitchen_counter](success)
(5) [Put, short_can, kitchen_counter](fail)
(6) [Go to, drawer](success)
(7) [Put, short_can, drawer](fail)
(8) [Go to, kitchen_counter](success)
(9) [Put, short_can, kitchen_counter](fail)
(10) [Go to, drawer](success)
(11) [Put, short_can, drawer](fail)
(12) [Go to, kitchen_counter](success)
(13) [Put, short_can, kitchen_counter](fail)
(14) [Go to, drawer](success)
(15) [Put, short_can, drawer](fail)
(16) [Go to, kitchen_counter](success)
(17) [Put, short_can, kitchen_counter](fail)
(18) [Go to, drawer](success)
(19) [Put, short_can, drawer](fail)
(20) [Go to, kitchen_counter](success)

This is the result of one run, and we can see that the TP of this run is as calculated in Section 2.3, max ( 13 , 1
4 , 1

2 , 2
5 ) = 0.5.

C.2. Success End Rate

In the above result, the number of steps reach 20, and there is no End action to terminate the task. Here’s a example to show
the success end.

(1) [Go to, kitchen_counter](success)
(2) [Go to, yellow_box](success)
(3) [Pick, yellow_box](success)
(4) [Go to, fridge](success)
(5) [Put, yellow_box, fridge](fail)
(6) [Open, fridge](fail)
(7) [Go to, kitchen_counter](success)
(8) [Put, yellow_box, kitchen_counter](success)
(9) [Go to, fridge](success)
(10) [Open, fridge](success)
(11) [Go to, kitchen_counter](success)
(12) [Pick, yellow_box](success)
(13) [Go to, fridge](success)
(14) [Put, yellow_box, fridge](success)
(15) [Close, fridge](success)
(16) [End]

This is the result of one run for the task take a yellow box and put it into the fridge, and we can judge by its keypath that it
complete the task successfully. It has End action, so the End is a success end which can be treated as one of the numerators
when calculating SER in Section 2.3. In fact, as said in Section 2.3, successful task trajectory must have one end, but there
maybe other unsuccessful task trajectories have ends, that’s why we calculating SER.

C.3. Success Re-plan Rate

First of all, the next action our agent takes after the previous action failed is called replan. Use the above subsection result as
an example, and it’s a successful task trajectory. In the step 5, the agent try to put the yellow box in the fridge but failed,
and then, it try to open the fridge which can be treated as a success replan even though it failed again. Since the action
open fridge is a meaningful action which can lead to the final success. It’s one of the numerators when calculating SRR in
Section 2.3. Also, in the first subsection for TP, the example is an unsuccessful task trajectory, so actions like put short can
drawer are not success replan.
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D. High Level Planning
In this section, we will should how the high-level planner described in Section 3.2 works step by step. A running
demonstration of our HomieBot is shown in Fig. D4. To provide more intuitive understanding, we extract core sections
from the original code and adapt them into a more general and easy-to-understand format to illustrate the process flow, this
processing method is also applied to all subsequent code demonstrations. First, we provide the system information used in
HomieBot, and all subsequent references to system information are consistent with what is provided here.

Task: check if there are bananas in the fridge; if not, get one 

from the kitchen and put it in the fridge.

VLM 

Low 

Level 

Execution

Image:

Inventory: None

Historical Execution: (1) [Go to, fridge](success) (2) 

[Open, fridge](success) …… (7) [Go to, banana](success)

Feedback: None

Analysis: I successfully arrive the banana and find it, so I 

should pick it.

Subtask: [Pick, banana]

Model: RT-1-X

Image: 

Inventory: None

Historical Execution: : (1) [Go to, fridge](success) …… 

(7) [Go to, banana](success) (8) [Pick, banana](fail)

Feedback: Unable to pick, the subtask is too difficult to 

perform.

Analysis: I failed to pick the banana, as the task is too 

difficult, so I should go to the kitchen counter next.

Subtask: [Go to, kitchen_counter]

Model: NoMaD

……

……

Figure D4. An illustration of running pipeline of HomieBot. After receiving images and feed- back, LMM generates analysis, specific
subtask and model choice for low level executor to per- form.

You are a powerful housework assistant, I will give you following information for you to make a decision toward the final task.
(1) Observation images: Four first-person perspective images of the current environment, in the order of front, left, back, and
right.
(2) Task: Your final goal.
(3) Inventory: Your current assets, remember that you are a one-hand agent, which means you can’t open or pick when your
Inventory is not None, and you can’t put if your Inventory is None, this is very important.
(4) Historical Execution: Subtasks that were already fulfilled in the history, and the execution status of each subtask(success
or fail). You need to make decisions based on historical actions, current circumstances and your final task.
(5) Feedback: Feedback will provide error information of the last execution, it will be None if the last execution ends
successfully.

You should output with following formats:
Analysis: Make a detailed summary of your current situation based on given information, analyse and decide what to do next and
output the reason of your decision.
Subtask: [action, target], choose your action from the action list [Go to, Pick, Put, Open, Close, End], and the target can be a
place or a object from your observation. If you choose Put as your action, output in format [Put, object, place] which means
put the object to the place. If the final task is done and no more action is needed, just output [End].
Model: Choose one most suitable model in the model list [NoMaD, PixNav, octo, RT-1-X]. NoMaD can go to a spot like living room,
PixNav focuses on object navigation and can go to a object, octo can handle with open and close, RT-1-X is good at picking and
putting.

You need to focus on the consistency with previous subtasks. You should pay attention to current Inventory and avoid conflicts.
Remember you can only go to the place and interact with the objects you observe in your sight.
Remember the logic between outputs, it is recommended to open the receptacle before you pick something because you can’t open
while holding, and it’s recommended to arrive the object place before you interact with it.
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Remember you just need to output the next subtask to be fulfilled and don’t output a whole plan, this is very important.
Remember you should output strictly with the response template.
Now, I will send the message so that you can make planning accordingly.

Next, we define some classes to make the overall process more readable and smooth. Here we only list most relevant and
important parts in the process.

import os
import json
import re

class Conversations:
def __init__(self, max_round=20):

self.system = SYSTEM_INFO
self.history = []
self.round = 0
self.window = 3
self.max_round = max_round

def get_history_prompt(self):
history_prompt = ""
if self.round < self.window:

history_prompt = "".join(self.history)
else:

history_prompt = "".join(self.history[-3:])
return history_prompt

def reset(self):
self.history = []
self.round = 0

def save(self, save_path):
with open(os.path.join(save_path, "conversation.json"), "w") as file:

json.dump(self.history, file, indent=4)

class HomieBot:
def __init__(self):

self.conv = Conversations()
self.inventory = []
self.comm = Communicator()

def get_inventory(self):
if len(self.inventory) == 0:

return "None"
else:

return " ".join(self.inventory)

def generate_instruction(self, task, feedback, historical_execution):
if historical_execution == "":

instruction = f"Task: {task}\nInventory: {self.get_inventory()}\nHistorical Execution: None\nFeedback: None\nNow
based on the instruction above, please output Analysis, Subtask and Model in mentioned format.\n"

else:
instruction = f"Task: {task}\nInventory: {self.get_inventory()}\nHistorical Execution: {historical_execution}\
nFeedback: {feedback}\nNow based on the instruction above, please output Analysis, Subtask and Model in mentioned
format.\n"

return instruction

def update_inventory(self, subtask, feedback):
subtask = subtask.lower()
if "None" in feedback:

if "pick" in subtask:
obj = subtask.split.split(’,’)[1].strip()
self.inventory.append(obj)

if "put" in subtask:
self.inventory.pop()

else:
if "put" in subtask and "the object is missing" in feedback:

self.inventory.pop()

def end(self):
self.comm.close_connection()

the most important function generate instruction works as described in Section 3.2, which contains task, inventory, history
and feedback.

Afterward, we provide the process for HomieBot to execute the task in a single trajectory.
homie = HomieBot()
task = "input your task"
save_path = "save_path"
feedback = ""
historical_execution = ""

while homie.conv.round < homie.conv.max_round:
homie.conv.round += 1
instruction = homie.generate_instruction(task, feedback, historical_execution)
images = homie.comm.receive_env_images()
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output = model_inference(instruction, images)
homie.conv.history.append(f"USER:\n{instruction}ASSISTANT:\n{output}\n")

pattern = r’.*Analysis: *(.+?) *Subtask: *\[(.*?)\].*Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)
analysis = match.group(1).strip()
subtask = match.group(2).strip()
model_choice = match.group(3).strip()

homie.comm.send_subtask(subtask, model_choice, homie.get_inventory())
feedback, signal = homie.comm.receive_feedback()

homie.update_inventory(subtask, feedback)
historical_execution += f"({homie.conv.round}) {subtask}({signal}) "

if "end" in subtask.lower():
break

homie.conv.save(save_path)
homie.end()

the realization of function model inference varies from different models, but it’s quite easy to deploy different models into
HomieBot as we can see in the code.

E. Low Level Execution
E.1. Pipeline

def error_detection(action, target, inventory, env):
# Format Error Detection
if action not in action_list:

return ’fail’, f’{action} is not in the action list! You should only choose actions in the list.’

mapping_dict = load_name_mapping()
if target in mapping_dict:

target = mapping_dict[target]
else:

return ’fail’, f’{target} does not exist! Please choose another object’

# Logical Error Detection
if inventory != ’None’ and action in [’pick’, ’open’, ’close’]:

return ’fail’, f’Unable to {action}, the hand is full’
if inventory == ’None’ and action == ’put’:

return ’fail’, f’Unable to {action}, the hand is empty’

if action == ’put’ and "closed" in check_status(target):
return ’fail’, f’Unable to put, the {target} is closed, you should open it first’

if action in [’open’,’close’] and "non-interactive" in check_status(target):
return ’fail’, f’Can not {action} {target}! Please choose another object’

# Distance Error Detection
if action != "go to":

distance = calculate_distance(env, target)
if distance > 2:

return ’fail’, f’Unable to {action}, the target is far away’
if distance < 0.1:

return ’fail’, f’Unable to {action}, the target is too close’

return ’success’, ’None’

max_count = 20
comm = Communicator()
save_path = "save_path"
count_steps = 1
env = init_env()

while count_steps <= max_count:
images = get_env_images(save_path, env, count_steps)
comm.send_env_images(images)

action, target, inventory = comm.receive_subtask()
if "end" in action.lower():

comm.send_feedback("None", "success")
break

# Error Detection Before Execution
signal, feedback = error_detection(action, target, inventory, env)
if signal == "fail":

comm.send_feedback(feedback, signal)
break

for retry in range(3):
reset_arm(env)
# Error Detection During and After Execution
signal, feedback, env = execution(action, target, inventory, env)
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if signal == ’success’:
break

elif action == ’put’ and env[’grasped_obj’] is None:
feedback = f’Unable to {action}, and the object is missing’
break

elif retry == 2:
feedback = f’Unable to {action}, the subtask is too difficult to perform’

if signal == ’success’:
feedback = "None"

count_steps += 1
comm.send_feedback(feedback, signal)

E.2. Skills

The skill we choose and their functions are shown in Table E1.

Table E1. The list of skills we used with descriptions and examples

SKILL DESCRIPTION EXAMPLE

PICK OBJECT PICK AN OBJECT UP PICK SUGAR BOX
PUT OBJECT TO PLACE PUT AN OBJECT INTO A PLACE PUT LEMON ON BROWN TABLE
OPEN CONTAINER OPEN THE CONTAINER OPEN THE FRIDGE
CLOSE CONTAINER CLOSE THE CONTAINER CLOSE THE KITCHEN DRAWER
GO TO PLACE NAVIGATE TO A PLACE NAVIGATE TV STAND
GO TO OBJECT NAVIGATE TO WHERE AN OBJECT IS NAVIGATE BOWL
END END THE EXECUTION END

E.3. Models

M3 (Gu et al., 2022) can flexible interact with target objects from various locations based on the integration of manipulative
skills and mobility, while navigational skills are designed to accommodate multiple endpoints, ultimately leading to
successful operations. Specifically, M3 implements these concepts by emphasizing mobile manipulation skills over fixed
skills and training navigational skills using area targets rather than point targets.

RT-1-X ( (Padalkar et al., 2023)) architecture utilizes image and text instructions as inputs, and generates discrete end-
effector actions as outputs. Specifically, RT-1-X is a transformer-based model that guides robotic arms to complete various
manipulation tasks. RT-1-X is an extension of the RT-1 ( (Brohan et al., 2022)) model, which is designed for robot control
and trained on a large-scale robot dataset.

Octo ( (Team et al., 2024b)) is an open-source, general-purpose policy for robotic manipulation based on transformers. It
supports flexible task and observation definition and can be quickly integrated into new observation and action spaces.

NoMaD ( (Sridhar et al., 2024)) trains a single diffusion strategy for goal-oriented navigation and goal-independent
exploration, the first one is to reach user-specified goals after localization and the second one is to search new environments.
The method is instantiated using a transformer-based large-scale policy trained on data from various ground robots.

PixNav ( (Cai et al., 2024)) is a pixel-guided navigational skill. It designs an LLM-based planner that utilizes common
sense between objects and rooms to select the optimal waypoints, which are then executed by a pixel navigation strategy to
achieve long-line-of-sight navigation. In this pipeline, we use its ability of finding the optimal waypoint and pixel navigation
to navigate to some specific small object such as lemon and sugar box.
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Table E2. Descriptions of Low Level Models used in HOMIEBOT.

MODEL INPUT CAPABILITY TASK

RT-1-X(BROHAN ET AL., 2022) RGB & INSTRUCTIONS MANIPULATION PICKING & PLACING
OCTO(TEAM ET AL., 2024B) RGB & INSTRUCTIONS MANIPULATION OPENING & CLOSING
NOMAD(SRIDHAR ET AL., 2024) RGB & GOAL-IMAGE IMAGE-NAVIGATION NAVIGATE TO SPOT & LARGE OBJECT
PIXNAV(CAI ET AL., 2024) RGB & GOAL-NAME PIXEL-NAVIGATION NAVIGATE TO OBJECT

E.4. Error Classification

Logical error If the hand already has an object (inventory is not empty) but still attempts to perform a pick/open/close
operation, the execution will fail, and the message the hand is full will be returned; if the hand has no object (inventory is
empty) but still attempts to perform a place operation, the execution will fail, and the message the hand is empty will be
returned; if the item is not a container but still attempts to perform a open/close operation, the execution will fail, and the
message please choose another object will be returned. In the execution with environment state information, if the container
is closed and a place operation is still attempted, the execution will fail, and the message the container is closed, you should
open it first will be returned.

Distance error In the execution with environment state information, if the agent is too close to the target, causing the arm
to be unable to extend properly but still attempts to perform a pick/place/open/close operation, the execution will fail, and
the message the target is too close will be returned; if the agent is too far from the target, causing it to be unable to reach the
target object but still attempts to perform a pick/place/open/close operation, the execution will fail, and the message the
target is far away will be returned.

Format Error For high level planning, it may output an object which is not in the scene, that is, in low level execution, we
can’t find an object with a name matching the input in the scene, the message please choose another object will be returned;
also, high level planning may output in a wrong operation which can not be performed, the message You should only choose
actions in the list will be returned.

Execution Error Due to the limited capabilities of low-level models, sometimes the failure is not caused by HLP.
Therefore, each action can be executed up to three times. If it fails after three times, it will return a message the subtask is
too difficult to perform; also, when performing a put operation, if the agent put the wrong place, it will return a message the
object is missing to remind the agent to re-plan and re-pick.

F. Data Augmentation
F.1. SFT Augmentation

To expand the original dataset size, we first use GPT-4o (Achiam et al., 2023) to regenerate text descriptions. Here is the
regeneration code clip, we just show how to regenerate task descriptions, but the regeneration of subtask analysis uses the
same template.

client = OpenAI(api_key=’’)
completion = client.chat.completions.create(

model="gpt-4o",
messages=[

{"role": "system", "content": "Rewrite the following text with the same meaning but in a different description while do
not change object’s name: "},
{"role": "user", "content": task}

]
)

Next we show how to convert a single EMMOE data into fix-format conversation data. After processing, each individual
subtask will be combined with all previously subtasks to form a SFT data.

import os
with open(task_path) as file:

content = file.read()
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content = content.split("\n\n")
task = content[0]
historical = ""
sft_data = []

for i, subtask_info in enumerate(content[1:]):
subtask_data = {}
subtask_info = subtask_info.strip().split("\n")
if subtask_info[0] == ’’:

continue
subtask_id, decision = subtask_info[0].split(’: ’)
subtask_id = subtask_id.lower()
analysis = subtask_info[1]

if "End" not in decision:
action, model_choice = decision.strip(’)’).split(’ (’)

else:
action = "[End]"
model_choice = "None"

image_paths = [
os.path.join(save_dir, f"{subtask_id}_front.png"),
os.path.join(save_dir, f"{subtask_id}_left.png"),
os.path.join(save_dir, f"{subtask_id}_back.png"),
os.path.join(save_dir, f"{subtask_id}_right.png")

]
for path in image_paths:

if not os.path.exists(path):
raise FileNotFoundError(f"File does NOT exist: {path}")

if i == 0:
instruction = f"{task}\nInventory: None\nHistorical Execution: None\nFeedback: None\nNow, please output Analysis,
Subtask and Model, according to the instruction above."

else:
instruction = f"{task}\n{inventory}\nHistorical Execution:{historical}\n{feedback}\nNow, please output Analysis, Subtask
and Model, according to the instruction above."

answer = f"{analysis}\nSubtask: {action}\nModel: {model_choice}"

feedback = subtask_info[2]
inventory = subtask_info[3]
if "None" in feedback:

historical += f"({i+1}){decision} (success)\n"
else:

historical += f"({i+1}){decision} (fail)\n"

conv = []
conv.append({"from": "human", "value": instruction})
conv.append({"from": "gpt", "value": answer})

task_id = ’_’.join(task_path.split(’.’)[0].split(’/’)[-2:])

subtask_data["id"] = task_id + ’_’ + subtask_id
subtask_data["image"] = image_paths
subtask_data["conversations"] = conv

sft_data.append(subtask_data)

We also provide some data samples for more intuitive understanding.
[

{
"id": "21_info_subtask13",
"image": [

"./HomieBot/data/train/21/subtask13_front.png",
"./HomieBot/data/train/21/subtask13_left.png",
"./HomieBot/data/train/21/subtask13_back.png",
"./HomieBot/data/train/21/subtask13_right.png"

],
"conversations": [

{
"from": "human",
"value": "Task: clean up the blue sofa\nInventory: None\nHistorical Execution:(1)[Go to, blue_sofa] (PixNav) (
success)\n(2)[Pick, cracker_box] (RT-1-X) (success)\n(3)[Go to, kitchen_counter] (NoMaD) (success)\n(4)[Put,
cracker_box, kitchen_counter] (RT-1-X) (success)\n(5)[Go to, blue_sofa] (PixNav) (success)\n(6)[Pick, sugar_box]
(RT-1-X) (success)\n(7)[Go to, kitchen_counter] (NoMaD) (success)\n(8)[Put, sugar_box, kitchen_counter] (RT-1-X

) (success)\n(9)[Go to, blue_sofa] (PixNav) (success)\n(10)[Pick, soup_can] (RT-1-X) (success)\n(11)[Go to,
kitchen_counter] (NoMaD) (success)\n(12)[Put, soup_can, kitchen_counter] (RT-1-X) (success)\n\nFeedback: None\
nNow, please output Analysis, Subtask and Model, according to the instruction above."

},
{

"from": "gpt",
"value": "Analysis: I successfully put the soup_can on the kitchen_counter, according to my task, I should go
back to the sofa to check whether it’s clean or not\nSubtask: [Go to, blue_sofa]\nModel: PixNav"

}
]

},
{

"id": "21_info_subtask14",
"image": [

"./HomieBot/data/train/21/subtask14_front.png",
"./HomieBot/data/train/21/subtask14_left.png",
"./HomieBot/data/train/21/subtask14_back.png",
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"./HomieBot/data/train/21/subtask14_right.png"
],
"conversations": [

{
"from": "human",
"value": "Task: clean up the blue sofa\nInventory: None\nHistorical Execution:(1)[Go to, blue_sofa] (PixNav) (
success)\n(2)[Pick, cracker_box] (RT-1-X) (success)\n(3)[Go to, kitchen_counter] (NoMaD) (success)\n(4)[Put,
cracker_box, kitchen_counter] (RT-1-X) (success)\n(5)[Go to, blue_sofa] (PixNav) (success)\n(6)[Pick, sugar_box]
(RT-1-X) (success)\n(7)[Go to, kitchen_counter] (NoMaD) (success)\n(8)[Put, sugar_box, kitchen_counter] (RT-1-X

) (success)\n(9)[Go to, blue_sofa] (PixNav) (success)\n(10)[Pick, soup_can] (RT-1-X) (success)\n(11)[Go to,
kitchen_counter] (NoMaD) (success)\n(12)[Put, soup_can, kitchen_counter] (RT-1-X) (success)\n(13)[Go to,
blue_sofa] (PixNav) (success)\n\nFeedback: None\nNow, please output Analysis, Subtask and Model, according to
the instruction above."

},
{

"from": "gpt",
"value": "Analysis: According to the historical execution and final task, I have finally finished the task and
it’s time to end\nSubtask: [End]\nModel: None"

}
]

}
]

F.2. DPO Augmentation

The last step for SFT Augmentation and the first step of DPO Augmentation occur simultaneously, failed subtasks are
considered junk data for SFT but can be used to construct DPO data, so we run data sift function first. After getting initial
DPO data, we will use SFT data, model change, order change and action change to construct final DPO dataset.

def data_sift(subtask_list):
sft_data = []
dpo_data = []
flag = 1
for i in range(1, len(subtask_list)):

if "Feedback: None" in subtask_list[i]["conversations"][0]["value"]:
sft_data.append(subtask_list[i-1])
if flag == 0:

dpo_data.append({
"prompt": subtask_list[i-2]["conversations"][0]["value"],
"chosen": ’\n’.join(subtask_list[i-1]["conversations"][1]["value"].split(’\n’)[1:]),
"rejected": ’\n’.join(subtask_list[i-2]["conversations"][1]["value"].split(’\n’)[1:])

})
flag = 1

else:
flag = 0

sft_data.append(subtask_list[-1])

return sft_data, dpo_data

def dpo_augment(sft_data, dpo_data):
for i in range(len(sft_data)):

prompt = sft_data[i]["conversations"][0]["value"]
chosen = ’\n’.join(sft_data[i]["conversations"][1]["value"].split(’\n’)[1:])
if "End" in sft_data[i]["conversations"][1]["value"]:

continue

def model_change(chosen):
if "NoMaD" in chosen:

return chosen.replace("NoMaD", "PixNav")
elif "PixNav" in chosen:

return chosen.replace("PixNav", "NoMaD")
elif "octo" in chosen:

return chosen.replace("octo", "RT-1-X")
else:

return chosen.replace("RT-1-X", "octo")

def order_change(i, sft_data):
return ’\n’.join(sft_data[i+1]["conversations"][1]["value"].split(’\n’)[1:])

def action_change(chosen):
if "Pick" in chosen:

return chosen.replace("Pick", "Fetch")
elif "Put" in chosen:

return chosen.replace("Put", "Place")
elif "Go to" in chosen:

return chosen.replace("Go to", "Move")
elif "Open" in chosen:

return chosen.replace("Open", "Pull")
elif "Close" in chosen:

return chosen.replace("Close", "Push")

reject1 = model_change(chosen)
reject2 = order_change(i, sft_data)
reject3 = action_change(chosen)
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject1})
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject2})
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject3})
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return dpo_data

Notably, action End is special among all available actions and it will only appear as rejected in DPO data. In the first
augmentation stage and order change, since the relationship between chosen and rejected is Oi and Oi+1 (see definitions
in Section 4.1) and there are no other subtasks after End, which means other actions might appear in either chosen or
rejected while End can only be the rejected. But this effect of suppressing the End output is exactly what we want. Even
executing a few extra steps after completing the task is better than terminating early without finishing the task. That is to
say, We hope the model could consider more and do not output End so easily. Experimental results in Table 2 and Table 3
confirm the effectiveness of this method as we can see an improvement in SER metric, another positive phenomenon in
results is that the length of the successful paths hasn’t increased significantly as we observe in PLWSR and TP .

Finally, we provide some DPO data examples.

[
{

"prompt": "Task: Clear everything off the table in front of you and place all the items in the sink.\nInventory: None\
nHistorical Execution:(1)[Pick, yellow_box] (RT-1-X) (success)\n(2)[Put, yellow_box, sink] (RT-1-X) (success)\n\
nFeedback: None\nNow, please output Analysis, Subtask and Model, according to the instruction above.",
"chosen": "Subtask: [Go to, red_can]\nModel: PixNav",
"rejected": "Subtask: [Pick, red_can]\nModel: RT-1-X"

},
{

"prompt": "Task: Collect all the fruit located on the brown table and place them on the sofa.\nInventory: None\
nHistorical Execution:(1)[Go to, brown_table] (NoMaD) (success)\n(2)[Pick, orange] (RT-1-X) (success)\n(3)[Go to, sofa]
(PixNav) (success)\n(4)[Put, orange, sofa] (RT-1-X) (success)\n(5)[Go to, brown_table] (NoMaD) (success)\n\nFeedback:
None\nNow, please output Analysis, Subtask and Model, according to the instruction above.",
"chosen": "Subtask: [Pick, pear]\nModel: RT-1-X",
"rejected": "Subtask: [Fetch, pear]\nModel: RT-1-X"

},
{

"prompt": "Task: find a blue can for me\nInventory: None\nHistorical Execution: None\nFeedback: None\nNow, please output
Analysis, Subtask and Model, according to the instruction above.",

"chosen": "Subtask: [Go to, fridge]\nModel: PixNav",
"rejected": "Subtask: [Go to, fridge]\nModel: NoMaD"

}
]

G. Training Details
G.1. Training Parameters

We use Video-LLaVA-7B (Zhang et al., 2023) as our base model, we also use the training scripts they provide and partial
parameters for sft are as follows.

--lora_enable True
--lora_r 128
--lora_alpha 256
--mm_projector_lr 2e-5
--bits 4
--mm_projector_type mlp2x_gelu
--mm_vision_select_layer -2
--mm_use_im_start_end False
--mm_use_im_patch_token False
--image_aspect_ratio pad
--group_by_modality_length True
--bf16 True
--num_train_epochs 1
--per_device_train_batch_size 16
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 50000
--save_total_limit 1
--learning_rate 5e-4
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1
--tf32 True
--model_max_length 2048
--tokenizer_model_max_length 3072
--gradient_checkpointing True
--dataloader_num_workers 4
--lazy_preprocess True
--report_to tensorboard
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We use finetuned model as our base and reference model, and use open-source trl package and parameters for dpo are as
follows.

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=’nf4’

)
training_args = DPOConfig(

per_device_train_batch_size=16,
per_device_eval_batch_size=4,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
max_grad_norm=0.3,
num_train_epochs=1,
save_steps=1000,
learning_rate=5e-6,
bf16=True,
save_total_limit=1,
logging_steps=10,
output_dir=output_dir,
optim="paged_adamw_32bit",
lr_scheduler_type="cosine",
warmup_ratio=0.03,
remove_unused_columns=False

)
peft_config = LoraConfig(

r=8,
lora_alpha=8,
target_modules=find_all_linear_names(model),
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",

)
dpo_trainer = DPOTrainer(

model,
model_ref,
args=training_args,
beta=0.1,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
max_prompt_length=2048,
max_length=2048,

)

H. Experimental Details
H.1. Baseline Setup

To make it more convenient for different models to deploy into our system without training, we slightly lower output format
requirements, here shows the adapatations.

import re

pattern = r’.*Analysis: *(.+?) *Subtask: *\[(.*?)\].*Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)
if match == None:

pattern = r’.*Analysis: *(.+?) *Subtask: *(.*?) *Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)

Despite lowering the output format standards, the output from 7B-sized models still fails to meet our least requirements.
They either do not output single-step subtasks or the subtask format is far from requirements. This issue is difficult to
resolve by merely adjusting prompts. Therefore, we leverage the in-context learning abilities of these models by providing
an output template example before each inference. Here, we provide the inference template for Qwen2-VL (Wang et al.,
2024b) MiniCPM-V 2.6 (Yao et al., 2024) respectively.

Qwen2VL
messages = [

{"role": "system", "content": homie.conv.system},
{"role": "user",
"content": "here is an example output, please strictly follow its format and system reminders in your output:\nAnalysis
: According to my final task, I need to fetch apples first, but it’s a better choice to go the fridge and open it first
, which will avoid potential conflicts, so I should go to the fridge next\nSubtask: [Go to, fridge]\nModel: NoMaD\n",

},
{"role": "assistant",
"content": "I will surely follow the given format, now you can send prompt to me."

},
{"role": "user",
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"content": [
{"type": "image", "image": images[0]},
{"type": "image", "image": images[1]},
{"type": "image", "image": images[2]},
{"type": "image", "image": images[3]},
{"type": "text", "text": instruction}]

}
]
prompt = processor.apply_chat_template(

messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(

text=[prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"

)to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=512)
enerated_ids_trimmed = [

out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
outputs = processor.batch_decode(

generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

MiniCPM-V 2.6
image_loads = [Image.open(image).convert(’RGB’) for image in images]
messages = [

{"role": "user",
"content": "here is an example output, please strictly follow its format and system reminders in your output:\nAnalysis
: According to my final task, I need to fetch apples first, but it’s a better choice to go the fridge and open it first
, which will avoid potential conflicts, so I should go to the fridge next\nSubtask: [Go to, fridge]\nModel: NoMaD\n",

},
{"role": "assistant",
"content": "I will surely follow the given format, now you can send prompt to me.",

},
{"role": "user",
"content": [image_loads[0], image_loads[1], image_loads[2], image_loads[3], instruction]

}
]

output = model.chat(
image=None,
system_prompt=homie.conv.system,
tokenizer=tokenizer

)

H.2. Results

Here we provide more detailed results of experiments in Section 4.5. Table H3 and Table H4 show the statistics results in
percentages while Table H5 and Table H6 show original counts. Table H7 show the original counts and success rate range of
each action.

Table H3. Successful Trajectories Error Statistics All definitions are same as in Section 4.5. Additionally, we add statistics of four
primary types.

MODELS L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E ALL

GPT-4O(ACHIAM ET AL., 2023) 3.97 0.79 0.79 0 5.56 44.44 0 44.44 1.59 17.46 19.05 15.87 15.08 30.95 30.29
GEMINI-1.5-PRO(TEAM ET AL., 2024A) 3.85 3.85 0 7.69 15.38 48.08 0 48.08 0 17.31 17.31 15.38 3.85 19.23 21.80
QWEN2-VL-7B(WANG ET AL., 2024B) 0 0 0 0 0 100 0 0 0 0 0 0 0 0 20
MINICPM-V 2.6(YAO ET AL., 2024) 0 0 0 0 0 100 0 0 0 0 0 0 0 0 6.67
HOMIEBOT-7B (SFT) 10.53 9.77 12.78 1.50 34.59 36.09 0 36.09 0 3.01 3.00 24.06 2.26 26.32 14.41
HOMIEBOT-7B (SFT+DPO) 10.17 15.25 9.32 3.39 38.14 33.05 0 33.05 0 3.39 3.39 25.42 0 25.42 12.87

I. Case Study
We show case studies of the inference from HomieBot in various situations as follows.

Case 1: Successful trajectory

Here we show a successful trajectory of our HomieBot (DPO version). To facilitate understanding, we convert the dialogue
data into the original EMMOE data format. As shown, even if errors occur, timely adjustments can be made through
feedback, ensuring the correctness of the execution process.
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Table H4. Failed Trajectories Error Statistics

MODELS L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E ALL

GPT-4O(ACHIAM ET AL., 2023) 6.87 0.12 0.69 3.65 11.34 8.41 0.06 8.47 0.57 64.88 65.45 13.99 0.75 14.74 73.61
GEMINI-1.5-PRO(TEAM ET AL., 2024A) 7.48 1.52 2.41 6.45 17.86 9.41 0 9.41 0 47.86 47.86 22.76 2.10 24.86 68.38
QWEN2-VL-7B(WANG ET AL., 2024B) 2.17 9.49 0.99 3.56 16.21 7.71 0 7.71 4.74 54.35 59.09 16.40 0.59 17.00 27.74
MINICPM-V 2.6(YAO ET AL., 2024) 8.58 0.80 0.92 1.72 12.01 7.78 0 7.78 3.49 65.39 68.88 10.87 0.46 11.33 31.08
HOMIEBOT-7B (SFT) 11.31 23.85 9.86 4.20 49.24 11.77 0 11.77 0.61 11.47 12.08 24.54 2.37 26.91 35.70
HOMIEBOT-7B (SFT+DPO) 11.46 23.90 11.13 2.62 49.10 9.25 0 9.25 0.25 17.27 17.51 22.67 1.47 24.14 35.88

Table H5. Original Successful Trajectories Statistics All data are integers.

MODELS L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E ALL

GPT-4O(ACHIAM ET AL., 2023) 5 1 1 0 7/126 56 0 56/126 2 22 24/126 20 19 39/126 126/416
GEMINI-1.5-PRO(TEAM ET AL., 2024A) 4 4 0 8 16/104 50 0 50/104 0 18 18/104 16 4 20/104 104/477
QWEN2-VL-7B(WANG ET AL., 2024B) 0 0 0 0 0/9 9 0 9/9 0 0 0/9 0 0 0/9 9/45
MINICPM-V 2.6(YAO ET AL., 2024) 0 0 0 0 0/1 1 0 0/1 0 0 0/1 0 0 0/1 1/15
HOMIEBOT-7B (SFT) 14 13 17 2 46/133 48 0 48/133 0 4 4/133 32 3 35/133 133/923
HOMIEBOT-7B (SFT+DPO) 12 18 11 4 45/118 39 0 39/118 0 4 4/118 30 0 30/118 118/917

Task: put the green_can on the brown_table to the fridge

#Round1
Analysis: According to my final task, I need to go to the green_can first.
Subtask: [Go to, green_can]
Inventory: None
Feedback: None

#Round2
Analysis: I successfully arrived the green_can and I should pick it next
Subtask: [Pick, green_can]
Inventory: green_can
Feedback: None

#Round3
Analysis: I successfully picked the green_can, so according to my final task, I should go to the fridge to put it down.
Subtask: [Go to, fridge]
Inventory: green_can
Feedback: None

#Round4
Analysis: I successfully arrived the fridge and I should put the green_can into it next
Subtask: [Put, green_can, fridge]
Inventory: green_can
Feedback: Unable to put, the fridge is closed, you should open it first

#Round5
Analysis: I failed to put the green_can into the fridge, since the fridge is closed, so I should open the fridge first
Subtask: [Open, fridge]
Inventory: green_can
Feedback: Unable to open, the hand is full

#Round6
Analysis: I failed to open the fridge because my hand is full, so I should put the green_can on the brown_table first
Subtask: [Go to, brown_table]
Inventory: green_can
Feedback: None

#Round7
Analysis: I successfully arrive the brown_table and I should put the green_can on it
Subtask: [Put, green_can, brown_table]
Inventory: None
Feedback: None

#Round8
Analysis: I successfully put the green_can on the brown_table, so I should go to the fridge next
Subtask: [Go to, fridge]
Inventory: None
Feedback: None

#Round9
Analysis: I successfully arrived the fridge and I should open it next
Subtask: [Open, fridge]
Inventory: None
Feedback: None

#Round10
Analysis: I successfully open the fridge and find the green_can, so I should go to the green_can.
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Table H6. Original Failed Trajectories Statistics

MODELS L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E ALL

GPT-4O(ACHIAM ET AL., 2023) 228 4 23 121 376/3317 279 2 281/3317 19 2152 2171/3317 464 25 489/3317 3317/4506
GEMINI-1.5-PRO(TEAM ET AL., 2024A) 217 44 70 187 518/2900 273 0 273/2900 0 1388 1388/2900 660 61 721/2900 2900/4241
QWEN2-VL-7B(WANG ET AL., 2024B) 33 144 15 54 246/1518 117 0 117/1518 72 825 897/1518 249 9 258/1518 1518/5472
MINICPM-V 2.6(YAO ET AL., 2024) 150 14 16 30 210/1748 136 0 136/1748 61 1143 1204/1748 190 8 198/1748 1748/5624
HOMIEBOT-7B (SFT) 148 312 129 55 644/1308 154 0 154/1308 8 150 158/1308 321 31 352/1308 1308/3664
HOMIEBOT-7B (SFT+DPO) 140 292 136 32 600/1222 113 0 113/1222 3 211 214/1222 277 18 295/1222 1222/3406

Table H7. Count represents the number of each action error with a total count behind. SRrange is the percentage to indicate the range of
success rates of each action, with the average value shown in parentheses.

METRICS GO TO PICK PLACE OPEN CLOSE

COUNT 938/2437 1213/2437 178/2437 81/2437 27/2437
SRrange (45.32)31.19∼82.89 (22.45)18.34∼28.95 (40.97)29.06∼69.40 (43.13)30.13∼75.84 (36.45)26.72∼57.37

Subtask: [Go to, green_can]
Inventory: None
Feedback: None

#Round11
Analysis: I successfully arrive the green_can and find it, so I should pick it.
Subtask: [Pick, green_can]
Inventory: green_can
Feedback: None

#Round12
Analysis: I successfully picked the green_can, so according to my final task, I should go to the fridge to put it down.
Subtask: [Go to, fridge]
Inventory: green_can
Feedback: None

#Round13
Analysis: I successfully arrived the fridge and I should put the green_can into it next
Subtask: [Put, green_can, fridge]
Inventory: None
Feedback: None

#Round14
Analysis: I successfully put the green_can into the fridge, so I should close the fridge next
Subtask: [Close, fridge]
Inventory: None
Feedback: None\n

#Round15
Analysis: According to the historical execution and final task, I have finally finished the task and it’s time to end
Subtask: [End]
Inventory: None
Feedback: None

Case 2: Terrible Grounding

Here we show a terrible grounding problem issues during the inference of GPT4-o (Achiam et al., 2023). Due to the lengthy
path, we only highlight the most critical subtask outputs and their execution results to emphasize errors (following cases
are handled similarly). We can see that the ungrounded output directly prevents the process to be continued. Even after
informing the model that the object doesn’t exist, the issue remains unresolved. The model continues to output incorrect
objects or makes mistakes again after a few steps.

Task: clean up the beige table and put all items to kitchen

(1) Go to, beige table(success)
(2) Pick, item(fail)
(3) Pick, item(fail)
(4) Pick, item(fail)
(5) Pick, item(fail)
(6) Pick, item(fail)
(7) Pick, item(fail)
(8) Pick, item on the table(fail)
(9) Pick, item on the table(fail)
(10) Pick, item on the table(fail)
(11) Pick, item on the table(fail)
(12) Pick, item(fail)
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(13) Pick, item on the table(fail)
(14) Pick, item on the beige table(fail)
(15) Pick, stack of papers(fail)
(16) Pick, box(fail)
(17) Go to, closer to the table(fail)
(18) Pick, item on the table(fail)
(19) Pick, visible item on the beige table(fail)

Case 3: Limited LLE

Here we show a problem issues from the limited ability of low-level models. As we can see in step7 and step8, though
high-level planner makes correct plans, execution still fails due to the limited ability of low-level models, this problem
occurs repeatedly during whole process and finally leads to the failue the trajectory.

Task: take a yellow box and put it into the fridge.

(1) Go to, living room(success)
(2) Pick, yellow box(success)
(3) Go to, kitchen(success)
(4) Open, fridge(fail)
(5) Put, yellow box, counter(fail)
(6) Put, yellow box, table(fail)
(7) Go to, fridge(success)
(8) Open, fridge(fail)
(9) Put, yellow box, counter(fail)
(10) Open, fridge(fail)
(11) Put, yellow box, counter(fail)
(12) Open, fridge(fail)
(13) Put, yellow box, counter(fail)
(14) Open, fridge(fail)
(15) Put, yellow box, counter(fail)
(16) Open, fridge(fail)
(17) Put, yellow box, counter(fail)
(18) Open, fridge(fail)
(19) Put, yellow box, counter(fail)

Case 4: Meaningless Outputs

Here we show a case of Qwen2-VL (Wang et al., 2024b) generating a large amount of meaningless outputs during the
inference. As we can see, even though all subtasks are successful, the agent keep circling in place without making progress.
These meaningless outputs quickly consume the remaining execution steps, ultimately causing the task to fail.

Task: find two bowls in the room and put them in the kitchen sink
(1) Go to, kitchen(success)
(2) Go to, kitchen(success)
(3) Go to, kitchen(success)
(4) Go to, kitchen(success)
(5) Go to, kitchen(success)
(6) Go to, kitchen(success)
(7) Go to, living room(success)
(8) Go to, living room(success)
(9) Go to, kitchen(success)
(10) Go to, kitchen(success)
(11) Go to, living room(success)
(12) Go to, living room(success)
(13) Go to, living room(success)
(14) Go to, living room(success)
(15) Go to, living room(success)
(16) Go to, living room(success)
(17) Go to, living room(success)
(18) Go to, living room(success)
(19) Go to, living room(success)

Case 5: Solvable D1 Error

Here we show how D1 error is solvable during the inference of Gemini-1.5-Pro (Team et al., 2024a). As we can see in
step3, after a D1 error happens, a Go to action can effectively solve it and facilitate the success of the whole trajectory.

Task: fetch one crack box and one sugar box and put them on the beige table

(1) [Go to, beige_table](success)
(2) [Pick, cracker_box](fail)
(3) [Go to, cracker_box](success)
(4) [Pick, cracker_box](success)
(5) [Go to, beige_table](success)
(6) [Put, cracker_box, beige_table](success)
(7) [Go to, brown_table](success)
(8) [Put, sugar_box, brown_table](fail)
(9) [Go to, beige_table](success)
(10) [Put, sugar_box, beige_table](fail)
(11) [Go to, sugar_box](success)
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(12) [Pick, sugar_box](success)
(13) [Go to, beige_table](success)
(14) [Put, sugar_box, beige_table](success)
(15) [End](success)
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